ÈÐ Wïgê† Ðð† ñåmê

ïñ£ð§ê¢, ïñ£ðrmå†ïðñ §ê¢µr, Ðïgï†ål £ðrêñ§ï¢§, hå¢kïñg, §¥§†êm åÐmïñ阮rå†ïðñ, lïñµx ßlðg

Lenova Y580 Bumblebee + Cuda


I spent a considerable amount of time getting this to work.  None of the tutorials online worked.  What I found was so simple….but this had happened a long time ago and I just tried it.

For cuda to work, you have to have the /dev/nvidia* devices.  However, just because you have 1 nvidia card doesn’t mean it will always be /dev/nvidia1  So my fix was this:

First Installing Bumblebee Repo + Packages

[codesyntax lang=”bash”]

sudo add-apt-repository ppa:bumblebee/stable
sudo add-apt-repository ppa:ubuntu-x-swat/x-updates
sudo apt-get purge nvidia*
sudo apt-get update
sudo apt-get install bumblebee bumblebee-nvidia linux-headers-generic

[/codesyntax]

Next, you will need to blacklist the nouveou module:

[codesyntax lang=”bash”]

sudo sed -i 's/quiet splash/quiet splash nouveau.blacklist=1/g' /etc/default/grub

[/codesyntax]

Reboot your computer.

After you reboot, you should be able to run optirun glxgears and it should work.

Cuda Package Installation

Go the the nvidia cuda website and download the latest version for ubuntu.  When you do the installation, skip the driver installation.  Make sure you add the library stuff to the bottom of your .bashrc file:

[codesyntax lang=”bash”]

PATH=$PATH:/usr/local/cuda/bin
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH
export LD_LIBRARY_PATH

[/codesyntax]

After it is installed, run the following commands to set up the dev devices properly:

[codesyntax lang=”bash”]

sudo /sbin/rmmod nvidia
sudo mknod -m 666 /dev/nvidia0 c 195 0
sudo mknod -m 666 /dev/nvidiactl c 195 255
sudo mknod -m 666 /dev/nvidia1 c 195 1
sudo /sbin/modprobe nvidia

[/codesyntax]

Now you can compile a cuda app and test your device:

[codesyntax lang=”bash”]

cd /usr/local/cuda/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery

[/codesyntax]

[codesyntax lang=”bash”]

./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 660M"
  CUDA Driver Version / Runtime Version          5.0 / 5.0
  CUDA Capability Major/Minor version number:    3.0
  Total amount of global memory:                 2048 MBytes (2147287040 bytes)
  ( 2) Multiprocessors x (192) CUDA Cores/MP:    384 CUDA Cores
  GPU Clock rate:                                950 MHz (0.95 GHz)
  Memory Clock rate:                             2500 Mhz
  Memory Bus Width:                              128-bit
  L2 Cache Size:                                 262144 bytes
  Max Texture Dimension Size (x,y,z)             1D=(65536), 2D=(65536,65536), 3D=(4096,4096,4096)
  Max Layered Texture Size (dim) x layers        1D=(16384) x 2048, 2D=(16384,16384) x 2048
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Maximum sizes of each dimension of a block:    1024 x 1024 x 64
  Maximum sizes of each dimension of a grid:     2147483647 x 65535 x 65535
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 1 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device PCI Bus ID / PCI location ID:           1 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 5.0, CUDA Runtime Version = 5.0, NumDevs = 1, Device0 = GeForce GTX 660M

[/codesyntax]

Once cuda is verified as working…..now make sure pyrit can see the device:

[codesyntax lang=”bash”]

$ pyrit list_cores
Pyrit 0.4.1-dev (svn r308) (C) 2008-2011 Lukas Lueg http://pyrit.googlecode.com
This code is distributed under the GNU General Public License v3+

The following cores seem available...
#1:  'CUDA-Device #1 'GeForce GTX 660M''
#2:  'CPU-Core (SSE2/AES)'
#3:  'CPU-Core (SSE2/AES)'
#4:  'CPU-Core (SSE2/AES)'
#5:  'CPU-Core (SSE2/AES)'
#6:  'CPU-Core (SSE2/AES)'
#7:  'CPU-Core (SSE2/AES)'
#8:  'CPU-Core (SSE2/AES)'

[/codesyntax]


Leave a Reply